3.3.62 \(\int \frac {1}{(e \cos (c+d x))^{3/2} (a+a \sin (c+d x))^3} \, dx\) [262]

3.3.62.1 Optimal result
3.3.62.2 Mathematica [C] (verified)
3.3.62.3 Rubi [A] (verified)
3.3.62.4 Maple [B] (verified)
3.3.62.5 Fricas [C] (verification not implemented)
3.3.62.6 Sympy [F(-1)]
3.3.62.7 Maxima [F]
3.3.62.8 Giac [F]
3.3.62.9 Mupad [F(-1)]

3.3.62.1 Optimal result

Integrand size = 25, antiderivative size = 187 \[ \int \frac {1}{(e \cos (c+d x))^{3/2} (a+a \sin (c+d x))^3} \, dx=-\frac {14 \sqrt {e \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{39 a^3 d e^2 \sqrt {\cos (c+d x)}}+\frac {14 \sin (c+d x)}{39 a^3 d e \sqrt {e \cos (c+d x)}}-\frac {2}{13 d e \sqrt {e \cos (c+d x)} (a+a \sin (c+d x))^3}-\frac {14}{117 a d e \sqrt {e \cos (c+d x)} (a+a \sin (c+d x))^2}-\frac {14}{117 d e \sqrt {e \cos (c+d x)} \left (a^3+a^3 \sin (c+d x)\right )} \]

output
14/39*sin(d*x+c)/a^3/d/e/(e*cos(d*x+c))^(1/2)-2/13/d/e/(a+a*sin(d*x+c))^3/ 
(e*cos(d*x+c))^(1/2)-14/117/a/d/e/(a+a*sin(d*x+c))^2/(e*cos(d*x+c))^(1/2)- 
14/117/d/e/(a^3+a^3*sin(d*x+c))/(e*cos(d*x+c))^(1/2)-14/39*(cos(1/2*d*x+1/ 
2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*(e* 
cos(d*x+c))^(1/2)/a^3/d/e^2/cos(d*x+c)^(1/2)
 
3.3.62.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.04 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.35 \[ \int \frac {1}{(e \cos (c+d x))^{3/2} (a+a \sin (c+d x))^3} \, dx=\frac {\operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {17}{4},\frac {3}{4},\frac {1}{2} (1-\sin (c+d x))\right ) \sqrt [4]{1+\sin (c+d x)}}{4 \sqrt [4]{2} a^3 d e \sqrt {e \cos (c+d x)}} \]

input
Integrate[1/((e*Cos[c + d*x])^(3/2)*(a + a*Sin[c + d*x])^3),x]
 
output
(Hypergeometric2F1[-1/4, 17/4, 3/4, (1 - Sin[c + d*x])/2]*(1 + Sin[c + d*x 
])^(1/4))/(4*2^(1/4)*a^3*d*e*Sqrt[e*Cos[c + d*x]])
 
3.3.62.3 Rubi [A] (verified)

Time = 0.87 (sec) , antiderivative size = 194, normalized size of antiderivative = 1.04, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.480, Rules used = {3042, 3160, 3042, 3160, 3042, 3162, 3042, 3116, 3042, 3121, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(a \sin (c+d x)+a)^3 (e \cos (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{(a \sin (c+d x)+a)^3 (e \cos (c+d x))^{3/2}}dx\)

\(\Big \downarrow \) 3160

\(\displaystyle \frac {7 \int \frac {1}{(e \cos (c+d x))^{3/2} (\sin (c+d x) a+a)^2}dx}{13 a}-\frac {2}{13 d e (a \sin (c+d x)+a)^3 \sqrt {e \cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7 \int \frac {1}{(e \cos (c+d x))^{3/2} (\sin (c+d x) a+a)^2}dx}{13 a}-\frac {2}{13 d e (a \sin (c+d x)+a)^3 \sqrt {e \cos (c+d x)}}\)

\(\Big \downarrow \) 3160

\(\displaystyle \frac {7 \left (\frac {5 \int \frac {1}{(e \cos (c+d x))^{3/2} (\sin (c+d x) a+a)}dx}{9 a}-\frac {2}{9 d e (a \sin (c+d x)+a)^2 \sqrt {e \cos (c+d x)}}\right )}{13 a}-\frac {2}{13 d e (a \sin (c+d x)+a)^3 \sqrt {e \cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7 \left (\frac {5 \int \frac {1}{(e \cos (c+d x))^{3/2} (\sin (c+d x) a+a)}dx}{9 a}-\frac {2}{9 d e (a \sin (c+d x)+a)^2 \sqrt {e \cos (c+d x)}}\right )}{13 a}-\frac {2}{13 d e (a \sin (c+d x)+a)^3 \sqrt {e \cos (c+d x)}}\)

\(\Big \downarrow \) 3162

\(\displaystyle \frac {7 \left (\frac {5 \left (\frac {3 \int \frac {1}{(e \cos (c+d x))^{3/2}}dx}{5 a}-\frac {2}{5 d e (a \sin (c+d x)+a) \sqrt {e \cos (c+d x)}}\right )}{9 a}-\frac {2}{9 d e (a \sin (c+d x)+a)^2 \sqrt {e \cos (c+d x)}}\right )}{13 a}-\frac {2}{13 d e (a \sin (c+d x)+a)^3 \sqrt {e \cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7 \left (\frac {5 \left (\frac {3 \int \frac {1}{\left (e \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{5 a}-\frac {2}{5 d e (a \sin (c+d x)+a) \sqrt {e \cos (c+d x)}}\right )}{9 a}-\frac {2}{9 d e (a \sin (c+d x)+a)^2 \sqrt {e \cos (c+d x)}}\right )}{13 a}-\frac {2}{13 d e (a \sin (c+d x)+a)^3 \sqrt {e \cos (c+d x)}}\)

\(\Big \downarrow \) 3116

\(\displaystyle \frac {7 \left (\frac {5 \left (\frac {3 \left (\frac {2 \sin (c+d x)}{d e \sqrt {e \cos (c+d x)}}-\frac {\int \sqrt {e \cos (c+d x)}dx}{e^2}\right )}{5 a}-\frac {2}{5 d e (a \sin (c+d x)+a) \sqrt {e \cos (c+d x)}}\right )}{9 a}-\frac {2}{9 d e (a \sin (c+d x)+a)^2 \sqrt {e \cos (c+d x)}}\right )}{13 a}-\frac {2}{13 d e (a \sin (c+d x)+a)^3 \sqrt {e \cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7 \left (\frac {5 \left (\frac {3 \left (\frac {2 \sin (c+d x)}{d e \sqrt {e \cos (c+d x)}}-\frac {\int \sqrt {e \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{e^2}\right )}{5 a}-\frac {2}{5 d e (a \sin (c+d x)+a) \sqrt {e \cos (c+d x)}}\right )}{9 a}-\frac {2}{9 d e (a \sin (c+d x)+a)^2 \sqrt {e \cos (c+d x)}}\right )}{13 a}-\frac {2}{13 d e (a \sin (c+d x)+a)^3 \sqrt {e \cos (c+d x)}}\)

\(\Big \downarrow \) 3121

\(\displaystyle \frac {7 \left (\frac {5 \left (\frac {3 \left (\frac {2 \sin (c+d x)}{d e \sqrt {e \cos (c+d x)}}-\frac {\sqrt {e \cos (c+d x)} \int \sqrt {\cos (c+d x)}dx}{e^2 \sqrt {\cos (c+d x)}}\right )}{5 a}-\frac {2}{5 d e (a \sin (c+d x)+a) \sqrt {e \cos (c+d x)}}\right )}{9 a}-\frac {2}{9 d e (a \sin (c+d x)+a)^2 \sqrt {e \cos (c+d x)}}\right )}{13 a}-\frac {2}{13 d e (a \sin (c+d x)+a)^3 \sqrt {e \cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7 \left (\frac {5 \left (\frac {3 \left (\frac {2 \sin (c+d x)}{d e \sqrt {e \cos (c+d x)}}-\frac {\sqrt {e \cos (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{e^2 \sqrt {\cos (c+d x)}}\right )}{5 a}-\frac {2}{5 d e (a \sin (c+d x)+a) \sqrt {e \cos (c+d x)}}\right )}{9 a}-\frac {2}{9 d e (a \sin (c+d x)+a)^2 \sqrt {e \cos (c+d x)}}\right )}{13 a}-\frac {2}{13 d e (a \sin (c+d x)+a)^3 \sqrt {e \cos (c+d x)}}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {7 \left (\frac {5 \left (\frac {3 \left (\frac {2 \sin (c+d x)}{d e \sqrt {e \cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {e \cos (c+d x)}}{d e^2 \sqrt {\cos (c+d x)}}\right )}{5 a}-\frac {2}{5 d e (a \sin (c+d x)+a) \sqrt {e \cos (c+d x)}}\right )}{9 a}-\frac {2}{9 d e (a \sin (c+d x)+a)^2 \sqrt {e \cos (c+d x)}}\right )}{13 a}-\frac {2}{13 d e (a \sin (c+d x)+a)^3 \sqrt {e \cos (c+d x)}}\)

input
Int[1/((e*Cos[c + d*x])^(3/2)*(a + a*Sin[c + d*x])^3),x]
 
output
-2/(13*d*e*Sqrt[e*Cos[c + d*x]]*(a + a*Sin[c + d*x])^3) + (7*(-2/(9*d*e*Sq 
rt[e*Cos[c + d*x]]*(a + a*Sin[c + d*x])^2) + (5*(-2/(5*d*e*Sqrt[e*Cos[c + 
d*x]]*(a + a*Sin[c + d*x])) + (3*((-2*Sqrt[e*Cos[c + d*x]]*EllipticE[(c + 
d*x)/2, 2])/(d*e^2*Sqrt[Cos[c + d*x]]) + (2*Sin[c + d*x])/(d*e*Sqrt[e*Cos[ 
c + d*x]])))/(5*a)))/(9*a)))/(13*a)
 

3.3.62.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 

rule 3160
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[b*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x 
])^m/(a*f*g*(2*m + p + 1))), x] + Simp[(m + p + 1)/(a*(2*m + p + 1))   Int[ 
(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, e, 
f, g, m, p}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && NeQ[2*m + p + 1, 0] & 
& IntegersQ[2*m, 2*p]
 

rule 3162
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[b*((g*Cos[e + f*x])^(p + 1)/(a*f*g*(p - 1)*(a + b*S 
in[e + f*x]))), x] + Simp[p/(a*(p - 1))   Int[(g*Cos[e + f*x])^p, x], x] /; 
 FreeQ[{a, b, e, f, g, p}, x] && EqQ[a^2 - b^2, 0] &&  !GeQ[p, 1] && Intege 
rQ[2*p]
 
3.3.62.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(695\) vs. \(2(191)=382\).

Time = 11.15 (sec) , antiderivative size = 696, normalized size of antiderivative = 3.72

method result size
default \(\text {Expression too large to display}\) \(696\)

input
int(1/(e*cos(d*x+c))^(3/2)/(a+a*sin(d*x+c))^3,x,method=_RETURNVERBOSE)
 
output
2/117/(64*sin(1/2*d*x+1/2*c)^12-192*sin(1/2*d*x+1/2*c)^10+240*sin(1/2*d*x+ 
1/2*c)^8-160*sin(1/2*d*x+1/2*c)^6+60*sin(1/2*d*x+1/2*c)^4-12*sin(1/2*d*x+1 
/2*c)^2+1)/a^3/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*e+e)^(1/2)/e*(2 
688*sin(1/2*d*x+1/2*c)^14*cos(1/2*d*x+1/2*c)-1344*(2*sin(1/2*d*x+1/2*c)^2- 
1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2 
)*sin(1/2*d*x+1/2*c)^12-8064*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^12+4032 
*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(s 
in(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^10+10304*sin(1/2*d*x+1/2*c)^ 
10*cos(1/2*d*x+1/2*c)-5040*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/ 
2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^8- 
7168*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^8+3360*EllipticE(cos(1/2*d*x+1/ 
2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2 
)*sin(1/2*d*x+1/2*c)^6+2896*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)-1260*( 
2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin 
(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^4-656*sin(1/2*d*x+1/2*c)^4*cos 
(1/2*d*x+1/2*c)+252*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x 
+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2+52*sin( 
1/2*d*x+1/2*c)^5+138*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-21*(sin(1/2*d 
*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+ 
1/2*c),2^(1/2))-52*sin(1/2*d*x+1/2*c)^3-23*sin(1/2*d*x+1/2*c))/d
 
3.3.62.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.12 (sec) , antiderivative size = 295, normalized size of antiderivative = 1.58 \[ \int \frac {1}{(e \cos (c+d x))^{3/2} (a+a \sin (c+d x))^3} \, dx=-\frac {21 \, {\left (3 i \, \sqrt {2} \cos \left (d x + c\right )^{3} + {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{3} - 4 i \, \sqrt {2} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right ) - 4 i \, \sqrt {2} \cos \left (d x + c\right )\right )} \sqrt {e} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 21 \, {\left (-3 i \, \sqrt {2} \cos \left (d x + c\right )^{3} + {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{3} + 4 i \, \sqrt {2} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right ) + 4 i \, \sqrt {2} \cos \left (d x + c\right )\right )} \sqrt {e} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (21 \, \cos \left (d x + c\right )^{4} - 98 \, \cos \left (d x + c\right )^{2} - 63 \, {\left (\cos \left (d x + c\right )^{2} - 1\right )} \sin \left (d x + c\right ) + 54\right )} \sqrt {e \cos \left (d x + c\right )}}{117 \, {\left (3 \, a^{3} d e^{2} \cos \left (d x + c\right )^{3} - 4 \, a^{3} d e^{2} \cos \left (d x + c\right ) + {\left (a^{3} d e^{2} \cos \left (d x + c\right )^{3} - 4 \, a^{3} d e^{2} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )\right )}} \]

input
integrate(1/(e*cos(d*x+c))^(3/2)/(a+a*sin(d*x+c))^3,x, algorithm="fricas")
 
output
-1/117*(21*(3*I*sqrt(2)*cos(d*x + c)^3 + (I*sqrt(2)*cos(d*x + c)^3 - 4*I*s 
qrt(2)*cos(d*x + c))*sin(d*x + c) - 4*I*sqrt(2)*cos(d*x + c))*sqrt(e)*weie 
rstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c 
))) + 21*(-3*I*sqrt(2)*cos(d*x + c)^3 + (-I*sqrt(2)*cos(d*x + c)^3 + 4*I*s 
qrt(2)*cos(d*x + c))*sin(d*x + c) + 4*I*sqrt(2)*cos(d*x + c))*sqrt(e)*weie 
rstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c 
))) + 2*(21*cos(d*x + c)^4 - 98*cos(d*x + c)^2 - 63*(cos(d*x + c)^2 - 1)*s 
in(d*x + c) + 54)*sqrt(e*cos(d*x + c)))/(3*a^3*d*e^2*cos(d*x + c)^3 - 4*a^ 
3*d*e^2*cos(d*x + c) + (a^3*d*e^2*cos(d*x + c)^3 - 4*a^3*d*e^2*cos(d*x + c 
))*sin(d*x + c))
 
3.3.62.6 Sympy [F(-1)]

Timed out. \[ \int \frac {1}{(e \cos (c+d x))^{3/2} (a+a \sin (c+d x))^3} \, dx=\text {Timed out} \]

input
integrate(1/(e*cos(d*x+c))**(3/2)/(a+a*sin(d*x+c))**3,x)
 
output
Timed out
 
3.3.62.7 Maxima [F]

\[ \int \frac {1}{(e \cos (c+d x))^{3/2} (a+a \sin (c+d x))^3} \, dx=\int { \frac {1}{\left (e \cos \left (d x + c\right )\right )^{\frac {3}{2}} {\left (a \sin \left (d x + c\right ) + a\right )}^{3}} \,d x } \]

input
integrate(1/(e*cos(d*x+c))^(3/2)/(a+a*sin(d*x+c))^3,x, algorithm="maxima")
 
output
integrate(1/((e*cos(d*x + c))^(3/2)*(a*sin(d*x + c) + a)^3), x)
 
3.3.62.8 Giac [F]

\[ \int \frac {1}{(e \cos (c+d x))^{3/2} (a+a \sin (c+d x))^3} \, dx=\int { \frac {1}{\left (e \cos \left (d x + c\right )\right )^{\frac {3}{2}} {\left (a \sin \left (d x + c\right ) + a\right )}^{3}} \,d x } \]

input
integrate(1/(e*cos(d*x+c))^(3/2)/(a+a*sin(d*x+c))^3,x, algorithm="giac")
 
output
integrate(1/((e*cos(d*x + c))^(3/2)*(a*sin(d*x + c) + a)^3), x)
 
3.3.62.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(e \cos (c+d x))^{3/2} (a+a \sin (c+d x))^3} \, dx=\int \frac {1}{{\left (e\,\cos \left (c+d\,x\right )\right )}^{3/2}\,{\left (a+a\,\sin \left (c+d\,x\right )\right )}^3} \,d x \]

input
int(1/((e*cos(c + d*x))^(3/2)*(a + a*sin(c + d*x))^3),x)
 
output
int(1/((e*cos(c + d*x))^(3/2)*(a + a*sin(c + d*x))^3), x)